问题:
Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container and n is at least 2.
解决:
【注】题目的意思是,数组中的每个数对应一条线段的长度,索引对应x坐标,两个索引可以组成一个底部的宽,高度就是前面所说的线段的长度,而既然是要盛水,高度就是两个线段中较短的一个。
① 暴力解决,超时。
class Solution {
public int maxArea(int[] height) { int area = 0; for (int i = 0;i < height.length ;i ++ ) { for (int j = i + 1;j < height.length ;j ++ ) { area = Math.max(area,getArea(j - i,Math.min(height[i],height[j]))); } } return area; } public int getArea (int x,int y){ return x * y; } }② 因为数组下标i是有序的,使用双指针分别从左右两端向中间移动,如果height[i] < height[j],left左移(这时右侧的面积值可能会大于当前值),否则,right右移。
class Solution {//12ms
public int maxArea(int[] height) { int left = 0; int right = height.length - 1; int maxArea = 0; while(left < right){ int area = (right - left) * Math.min(height[left],height[right]); if(maxArea < area) maxArea = area; if(height[left] < height[right]) left ++; else right --; } return maxArea; } }③ 进化版
public class Solution { //7ms
public int maxArea(int[] height) { int maxArea = 0; int left = 0; int right = height.length - 1; while(left < right){ if(height[left] > height[right]){ if(maxArea < height[right] * (right - left)) maxArea = height[right] * (right - left); right --; }else{ if(maxArea < height[left] * (right - left)) maxArea = height[left] * (right - left); left ++; } } return maxArea; } }